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Abstract

Outliers are extreme data points that have the potential to

influence statistical analyses. Outlier identification is

important to researchers using regression analysis because

outliers can influence the model used to such an extent

that they seriously distort the conclusions drawn from the

data. The present paper discusses the effects of outliers

on regression analysis and offers examples of various

detection methods.
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In regression, outliers are data points with unusually

large residuals (Anscombe, 1960) . Data points that are

outliers for some statistics (e.g., the mean) may not be

outliers for other statistics (e.g., the correlation

coefficient) . For example, in the following score set,

Alfred is an outlier on variable X (and on variable Y) as

regards the mean, the standard deviation, and skewness and

kurtosis, but not as regards the correlation coefficient.

X

Amanda 1 1

Jenny 3 2

Bob 5 3

Alfred 89 45

In statistical regression, as in all correlational

analyses, outliers present particular challenges for

researchers '(Bacon, 1995) . The following paper discusses

the challenges of outliers in regression and presents

examples of various outlier detection methods.

Regression Assumptions

For review, the assumptions underlying regression

analysis (Hecht, 1991; Serdahl, 1996) are as follows:

1. a linear relationship must exist between variables;

2. the values of the dependent variable are distributed

normally (follow the Gaussian distribution) for any

values of the independent variable (Bump, 1991);

3. homoscedasticity; and

4
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4. deviations from the least.squares line of best fit are

statistically independent.

Sources of Outliers

Outliers can exist in data sets for various reasons.

One of the challenges of working with outliers is that the

researcher is rarely sure of the reason for the outlying

observations. Understanding the causes for outlying data

points is important in the decision of whether to retain,

eliminate, or recode the observations in question. The most

common sources of outliers can be summarized as follows:

population variability, measurement or recording errors

(Anscombe, 1960; Iglewicz & Hoaglin, 1993), incorrect

distributional assumptions, unaccounted for structure

within the data (Iglewicz & Hoaglin, 1993), and execution

error (Anscombe, 1960).

Population variability

If a distribution is distributed normally, then some

variability must be present within the data. Under the

normal distribution, a point can potentially exist anywhere

within range of the distribution (Hecht, 1991, 1992).

Simply because a data point is located a far distance from

the mean does not necessarily imply that it is an errant

observation nor that its existence calls into question the

assumption of the general linear model (Hecht, 1991, 1992).

5
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The extreme point may merely reflect natural variability

within the population. Of course, aberrance due to this

dynamic is more likely when sample size is small.

Measurement or Recording Errors

No measurement device nor researcher is completely

infallible. At times, errors may be made in the

measurement, or the recording or coding of the observation

(Anscombe, 1960; Iglewicz & Hoaglin, 1993) . Measurement

apparatus may also be faulty (Anscombe, 1960) . In these

situations, if the researchers can be sure that the outlier

was caused by measurement or recording errors, then they

may legitimately choose to reject or recode the observation

(Anscombe, 1960; Hecht, 1991) . Iglewicz and Hoaglin (1993),

however, advocate the recording of all outliers because if

they reoccur in subsequent data collections, the

reoccurrence may indicate the need to modify measurement or

recording techniques.

Incorrect Distributional Assumptions

Outliers can appear in data sets if the distribution

assumed for the analysis is incorrect (Iglewicz & Hoaglin,

1993). Points that are located large distances from the

center may be more common in some distributions than in

others. Therefore, assuming the correct distribution is

important in research. Generally speaking, researchers

6
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should be aware of the distributional assumptions underlying

regression analysis and deal with this matter before

collecting data.

Structure Within the Data

Iglewicz and Hoaglin (1993) offer an example of data

that are presumed to come from random daily samples but

actually comes from a morning and an evening sample. In

this case, the data may actually contain more structure

than is being considered in the analysis. The data may need

to be investigated more fully before deciding whether to

retain, recode, or reject the outlying observations.

Execution Error

Anscombe (1960) pointed out that, as researchers, we

do not always accomplish what we set out to accomplish. In

other words, we may set out to measure one construct, but

in actuality measure something slightly different.

Outlier Detection

By inspecting data for outliers, researchers can avoid

making distorted conclusions about data and can make more

robust estimates of parameters (Bacon, 1995) . Iglewicz and

Hoagin (1993) advocated the inspection of all data for

outliers. Various outlier detection methods exist and will

be discussed presently.
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Residuals

Most outlier detection methods involve the calculation

of residuals (i.e., Y Yhat = e). In regression analysis,

a squared residual (i.e., e2) defines the amount of

unexplained variability a given individual contributes to

the total unexplained (within, error, residual) sum of

squares, or the distance from the data point to the

regression line on a scatter plot. One popular approach is

to delete an observation if the magnitude of its residual

exceeds the estimated population standard deviation

multiplied by a designated constant (C). (Anscombe, 1960;

Anscombe and Tukey, 1963; Hecht, 1991).

The value of the constant (C), is decided upon after

careful consideration of the consequences of failure to

reject erroneous observations versus mistaken rejection of

good observations. To reject an observation, the magnitude

of the residual of the observation must be large enough to

exceed the product of C with the standard deviation (s) . If

C is large, then the largest residual will be less likely

to exceed this product and the observation with the

greatest residual will be less likely to be rejected. If C

is small, however, the product of C with s will be smaller

and the observation with the greatest residual will be more

likely to be rejected. Researchers may choose a small value

8
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for C if they are greatly concerned with erroneous

observations and wish to reject all of them. If, however,

the data set includes no erroneous observations, there is

no guarantee that no residuals will exceed the product of C

with s. In such a case, good observations could potentially

be rejected; and error variance of the parameter estimates

would increase. The increase in error variance can be

conceptualized as an insurance premium to protect against

erroneous observations. Researchers must decide how much of

a premium (increase in error variance) they are willing to

pay to protect against erroneous observations. Usually a

premium of 2 or 2.5% is considered to be an acceptable

increase in error variance (Anscombe, 1960; Anscombe &

Tukey, 1963).. After the researcher decides upon the

acceptable premium, C can be calculated. See Anscombe

(1960) for more detailed information on the calculation of

C.

The process of outlier rejection begins with the

observation with the residual of the greatest magnitude and

is recalculated after each deletion until no residuals

remain with values greater than the magnitude of the

constant times the standard deviation. To control for

variation caused by the deleted outliers, the estimated

population mean and standard deviation are recalculated

9
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each time the procedure is used (Anscombe, 1960; Anscombe &

Tukey, 1963; Hecht, 1991).

Graphic Methods

Anscombe and Tukey (1963) encouraged beginning any

analysis of residuals by looking at a scatterplot.

Scatterplots usually show outliers as points located a far

distance from the majority of the data points. Figure 1

shows a scatterplot for a set of data points to be used

later in an investigation of outliers. Notice that one

point in particular appears to be located a good distance

from the perceived line of best fit for the other data

points. The researcher in this case may suspect this data

point of representing a grossly erroneous observation and

choose to in-spect it further.

Scatterplots of residuals against predictor variables

can also help to detect outliers (Larsen & McCleary, 1972).

These plots generally show outlier points located away from

the center and can be inspected for model violations

(Serdahl, 1996) . Typically, residual plots are most helpful

when the e scores are standardized so that the residual e

scores are on the same scale as the y scores in their z

score form (Serdahl, 1996) . Figure 2 shows a scatterplot of

standardized residuals against standardized predictor

values. Twenty of the twenty-one points appear to fall

10
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close to a central line. The 21st data point, however, is

located far away from the center of the others. Figure 2

was constructed from the same data used in Figure 1. The

same observation is suspected of being an outlier in each

plot.

Hat Matrix

Inspection of residual plots for large residuals can

offer valuable information about outliers, but this method

is not always completely effective. Some outliers exert

enough influence on the regression line to make yhati close

to y. In such a case, the observation may perform as an

outlier, but it does not have a large residual (Iglewicz &

Hoaglin, 1993) . The hat matrix can be helpful for detecting

these types of cases.

The hat matrix maps y into yhat (Hoaglin & Welsch,

1978) . Specifically, yhat = Hy, where H = x(ncy-IxT. The hat

matrix is generally used to detect high leverage points, or

points at which the magnitude of y has great influence on

the fit. The term, hij of H, denotes the amount of leverage

put forth on yhati by yj, or in other words, how changing yj

affects yhati. The diagonal of the hat matrix is composed of

hii values. Each hii value represents the amount of leverage

of an observed variable yi on the corresponding latent

variable yhati. The diagonal elements of the hat matrix
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express the influence of the observed variable yion the

fit. The leverage of observation i is defined as hfi,

1 (x1-xbar)2 , where xbar is the mean

Enk.l (xk-xbar) 2

of the x variable.

High leverage points, or high values on the diagonal

of the hat matrix, suggest that the corresponding

observation may be an outlier. Typically, any hfigreater

than twice the number of predictors, or independent

variables (IV), divided by the number of cases (hii > 2IV/n)

can be considered to be a high leverage point (Hoaglin &

Wesch, 1978). The following example, using the Draper and

Stoneman data presented by Hoaglin and Welsch (1978),

illustrates the utility of the hat matrix.

A FORTRAN program to compute the hat matrix was

developed by Thompson (1998) and is presented in Appendix

A. Two observed predictor variables and a constant were

used as the independent variables for this example. Data

for each independent variable and for the dependent

variable were input into the FORTRAN program. The input

data are presented in Appendix B. The first column of the

Appendix lists the constant, the second and third columns

list the observed values for the predictor scores, and the

fourth column lists the scores on the dependent variable.

12
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The hat matrix is computed on the basis of the formula:

yhat = X102,3(XT3noXiox3) IXT3xioy. As seen in Appendix C, the

input data matrix, X, has rank 10X3; the transpose of X has

rank 3X10. Appendix C presents the product of XT with X, the

inverse of the product, and the product of X with the

inverse matrix. A check was done to ensure that the product

of the XTX matrix with its inverse gave the identity matrix,

indicating that the inverse of XTX was truly the inverse.

The critical leverage value was determined by the

2IV/N rule, and was calculated to be 0.60. Notice the

values (h11) on the diagonal of the hat matrix. Only the

value for case 4 (0.6042) exceeds the critical value for

leverage. This suggests that the observed score y for the

fourth obserVation may influence the model fit. To

determine the actual influence of case 4 on the model fit,

standardized or studentized residuals may be computed for yi

when yi is removed from the regression analysis.

Standardized Residuals

Residuals are usually expressed on a standard scale to

facilitate interpretation (Hoaglin & Welsch, 1978; Iglewicz

& Hoaglin, 1993). The formula for the adjustment is given

by, ri/(s2(1-14)1/2), where ei = ri and s2 is the residual

mean square (Hoaglin & Welsch, 1978; Iglewicz & Hoaglin,

1993).

13



Outlier Identification 13

Studentized Residuals

Use of the studentized residual allows researchers to

consider the extent to which an observation is an outlier

by using statistical significance testing. The studentized

residual involves the calculation of the residual of the

data point in question when its influence has been removed

from the data regression equation. The term BETAhatm is the

least squares estimate of BETA on the data after

observation i has been removed. The studentized residual is

defined as,

ri = yi-xiBETAhat(i)

S(i) [1+xi (XT(i)X(i) )

The resulting ri* can then be used in a statistical

significance test involving the t distribution to determine

the statistical significance of the point's deviation from

the remaining data.

Hoaglin and Welsch (1978) advocated the use of the hat

matrix followed by an examination of studentized residuals.

The hat matrix offers information about high leverage

points, and the studentized residuals allow researchers to

identify discrepant y values. Depending on the results of

an examination of leverage points and residuals,

researchers may choose to discard questionable data points,

1 4
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or, if the outlying data points are known to be accurate,

the researchers may decide that the model does not

adequately fit the data.

Influence of Outliers on Regression Analyses

Influence of y-Axis Outliers

Outliers on the dependent variable typically exert

greater influence on the parameter estimates and R2 value

than do outliers on the independent variables (Hecht, 1991;

Serdahl, 1996) . Intuitively, this makes sense, as we

consider that the outlying data point on y pulls the

regression line towards itself in an effort to minimize

error variance (Serdahl, 1996, p. 8). Hecht (1991) found

that analysis of the standardized and studentized residuals

were the most effective diagnostic methods for identifying

outliers on the y axis.

Consider the fictitious data set presented in Table 1.

Both the independent variable, x, and the dependent

variable, y, were given equal means and standard

deviations. There are no obvious outliers present in the

data set. Figure 3 illustrates the output given by the SPSS

computer package for regression statistics and outlier

diagnostics. The output is presented exactly as it would

appear when given by SPSS. Note that the R2 value is an

exceptionally high 92% and the BETA is .958.

1 5
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Now consider the data in Tables 2 and 3. Table 2

presents a data set similar to the one given in Table 1,

but the Table 2 data includes one extra case. The added

case appears, upon visual inspection, to be an outlier on y

but not x. To determine if the extra case truly is an

outlying observation, we look to Figure 4. Notice under

"Case Diagnostics" that case number 21 is listed with a

standardized residual value of 4.133. Here, SPSS was asked

to list only cases for which the standardized residual

value exceeded 3.00, as reflected in the SPSS syntax file

presented in Appendix A. This critical value is context-

specific and may vary according to the study and researcher

judgment. According to the criteria set by the present

author, case.21 is a likely outlier for the given data set.

Notice that the R2 value, .392, has suffered a 53% drop

from the same value in Figure 1. The BETA value, .626, has

also been reduced from the previous example. This change in

BETA values indicates a considerable change in the

regression equation used to predict values of the dependent

variable once the single oulier on y has been dropped from

the analysis.

Influence of x-Axis Outliers

Outliers on the x axis impact regression statistics,

though to a smaller degree than do outliers on the y axis
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(Hecht, 1991). Although outliers on x can, and do,

influence the regression line, they usually have more

effect on the variability of the x scores than they do on

the relationship between the variables (Hecht, 1991).

Table 3 presents a data set with a suspiciously large

value for x in the 21st case. The SPSS analysis presented in

Figure 5, however, failed to report casewise diagnostics

for this data because none of the observations yielded a

standardized residual value greater than 3.00. Compare

Table 2 with Table 3. Notice that the outlying observations

would be identical except that value observed for y in

Table 2 is the value observed for x in Table 3 and vice-

versa. Interestingly, only the exceptional y value was

considered to be an actual outlier. This discrepancy may

exist because x is only considered for its impact on y. In

other words, y is the variable of interest. The formula may

be more sensitive to observations that are outliers on y

than it is to observations that are outliers on x unless

the extreme value of x shows a serious impact on y.

Influence of Both x-Axis and y-Axis Outliers

Table 4 presents data for a case in which both x and y

appear, upon visual examination, to be outliers. The score

for case 21 on y is identical to the score on the same

variable in Table 2. In Table 2, case 21 was considered to

1 7
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be an outlier on y. In Figure 6, however, the case

diagnostics section was omitted by SPSS indicating that no

outliers were found for Table 4 data.

Notice the R2 value in Figure 6 is 97% and the BETA

coefficient is .983. Compared with Figure 1 for data with

no obvious outliers, these values appear to be similar. The

idea illustrated by this example is that even though data

points may deviate from the mean, they may not necessarily

impact the coefficient of determination or the regression

equation. In this particular example, the data point in

question is scaled in the same direction as the rest of the

data. A graphical analysis would likely show little

deviation of case 21 from the regression line involving

only cases 1 through 20.

Identifying Damaging Outliers

Researchers need to recognize the distinction between

outliers and damaging outliers. An observation that is

identified as an outlier may or may not produce a damaging

effect on the regression equation (Hecht, 1991) . Rejecting

or recoding data is rarely a desirable option because of

the expense involved in data collection. Researchers should

also be reluctant to reject data because they do not want

to force data to conform to their preconceived hypotheses

(Hecht, 1991).

18
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Hecht (1991, 1992) asserted that too many researchers

want to reject outlying observations simply because they

are extreme points. Hecht contended that under the

assumption of the Gaussian normal distribution, extreme

data points have the potential to occur. To reject points

simply because they are extreme is essentially to reject

one of the assumptions upon which the regression analysis

is based. If many extreme points occur in a data set, the

assumption of the Gaussian distribution may need to be

evaluated for violations. Hopefully, however, researchers

would consider the distributional assumption before

beginning the analysis.

Given that identification of a point as an outlier is

not, in itself, grounds for exclusion, the question remains

of when can one legitimately reject an outlying

observation? Hecht (1991) advocated the rejection or

recoding of an outlier when it is (a) due solely to

measurement or recording errors or (b) when the outlier

"hinders understanding by its inclusion in the model" (p.

22).

To determine the extent to which an outlier hinders

understanding, researchers can compare two models, the

first of which includes the extreme point in the

construction of the model and the second of which does not.

19
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The researchers must then decide whether or not they

consider the difference in the two models to be meaningful

from a contextual standpoint (Hecht, 1991; Hoaglin &

Welsch, 1978).

Hoaglin and Welsch (1978, p. 20) suggested inspection

of (a) the change in BETA weights from one model to the

other or (b) the change in fit at the outlying point

(x1 (BETAhat-BETA1). In any case, the decision of whether or

not to reject must be made from a contextual standpoint in

light of all the data and distributional assumptions

However, outlier identification is not only a matter

on blind dust-bowl empiricism. For example, when potential

outliers are identified, when possible, it would be

reasonable for the researcher to ask these persons whether

they attended to the measurement tasks. The researcher

might also explore reasons why these individuals behaved

atypically; persons who responded honestly but unusually

probably should be kept in the data set. When interviewing

outlier candidates is not practical, sometimes researchers

can nevertheless explore other information about these

individuals to determine whether their behavior in

retrospect seems reasonable.

20
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However, when individuals admit inattention during

data collection, or acknowledge providing dishonest

responses, the decision to delete such outliers from

further analysis is in this case straightforward. It is

only troubling to delete outliers when the basis for the

aberrance cannot be understood; that is when the decision

of what to do with outliers is the most difficult.
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Table 1

Data for Regression Analysis With No Outliers

Case x Y

1 5.00 5.00

2 5.00 5.50

3 6.00 5.50

4 6.50 6.50

5 6.50 6.25

6 6.25 6.50

7 6.50 7.00

8 7.00 6.50

9 7.00 7.50

10 7.50 7.00

11 7.50 7.00

12 7.50 8.00

13 7.50 7.75

14 7.75 7.50

15 8.00 8.50

16 9.00 8.50

17 9.00 9.00

18 9.50 10.00

19 9.50 9.00

20 10.00 10.00

2 4
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Table 2

Data for Regression Analysis With Outlier on y

Case x Y

1 5.00 5.00

2 5.00 5.50

3 6.00 5.50

4 6.50 6.50

5 6.50 6.25

6 6.25 6.50

7 6.50 7.00

8 7.00 6.50

9 7.00 7.50

10 7.50 7.00

11 7.50 7.00

12 7.50 8.00

13 7.50 7.75

14 7.75 7.50

15 8.00 8.50

16 9.00 8.50

17 9.00 9.00

18 9.50 10.00

19 9.50 9.00

20 10.00 10.00

21 7.50 15.00

2 5
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Table 3

Data for Regression Analysis With Outlier on x

Case x Y

1 5.00 5.00

2 5.00 5.50

3 6.00 5.50

4 6.50 6.50

5 6.50 6.25

6 6.25 6.50

7 6.50 7.00

8 7.00 6.50

9 7.00 7.50

10 7.50 7.00

11 7.50 7.00

12 7.50 8.00

13 7.50 7.75

14 7.75 7.50

15 8.00 8.50

16 9.00 8.50

17 9.00 9.00

18 9.50 10.00

19 9.50 9.00

20 10.00 10.00

21 15.00 7.50

2 6
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Table 4

Data for Regression Analysis With Outliers on x and y

Case x y

1 5.00 5.00

2 5.00 5.50

3 6.00 5.50

4 6.50 6.50

5 6.50 6.25

6 6.25 6.50

7 6.50 7.00

8 7.00 6.50

9 7.00 7.50

10 7.50 7.00

11 7.50 7.00

12 7.50 8.00

13 7.50 7.75

14 7.75 7.50

15 8.00 8.50

16 9.00 8.50

17 9.00 9.00

18 9.50 10.00

19 9.50 9.00

20 10.00 10.00

21 15.00 15.00

2 7
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Figure 1

Scatterplot for Table 3 Data
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Figure 2

Scatterplot of Standardized Residuals Against Standardized
Predictor Values
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Figure 3

SPSS Output for Table 1 Data With No Outliers

Model Summar))

Model R R Square
Adjusted R

Square

Std. Error
of the

Estimate
, 1 .958a .918 .913 .4204

a. PrediCtors: (Constant), X

b. Dependent Variable: Y

ANOVAb

Model
Sum of
Squares df

Mean
Square F Sig.

1 Regression
Residual

Total

35.581

3.182
38.763

1

18

19

35.581

.177
201.281 .00

a. Predictors: (Constant), X

b. Dependent Variable: Y

Coefficients°

Standardi
zed

Unstandardized Coefficien
Coefficients ts

Model B Std. Error Beta t Sig.
1 (Constant) .311 .510 .610 .54

X .958 .068 .958 14.187 .00
a. Dependent Variable: Y

Residuals Statistice

Minimum Maximum Mean
Std.

Deviation N
Predicted Value 5.1017 9.8921 7.4250 1.3685 2
Residual -.5597 .5870 -1.78E-16 .4092 2
Std. Predicted Value -1.698 1.803 .000 1.000 2
Std. Residual -1.331 1.396 .000 .973 2

a. Dependent Variable: Y
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Figure 4

SPSS Output for Table 2 Data with Outlier on y

Model Summar))

Model R R Square
Adjusted R

Square

Std. Error
of the

Estimate
1 .958a .918 .913 .4204

a. Predictors: (Constant), X

b. Dependent Variable: Y

ANOWP

Model
Sum of
Squares df

Mean
Square F Sig.

1 Regression

Residual
Total

35.581

3.182
38.763

1

18

19

35.581

.177

201.281 .00

a. Predictors: (Constant), X

b. Dependent Variable: Y

Coefficientsa

Standardi
zed

Unstandardized Coefficien
Coefficients ts

Model B Std. Error Beta t Sig.
1 (Constant) .311 .510 .610 .54

X .958 .068 .958 14.187 .00

a. Dependent Variable: Y

Residuals Statistice

Minimum Maximum Mean
Std.

Deviation N
Predicted Value 5.1017 9.8921 7.4250 1.3685 2
Residual -.5597 .5870 -1.78E-16 .4092 2
Std. Predicted Value -1.698 1.803 .000 1.000 2
Std. Residual -1.331 1.396 .000 .973 2

a. Dependent Variable: Y
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Figure 5

SPSS Output for Table 3 Data With Outlier on x

Model Summar lb

Model R R Square
Adjusted R

Square

Std. Error
of the

Estimate
1 .958a .918 .913 .4204

a. Predictors: (Constant), X

b. Dependent Variable: Y

ANOVAb

Model
Sum of
Squares df

Mean
Square F Sig.

1 Regression
Residual
Total

35.581

3.182

38.763

1

18

19

35.581

.177
201.281 .00

a. Predictors: (Constant), X

b. Dependent Variable: Y

Coefficientsa

Standardi
zed

Unstandardized Coefficien
Coefficients ts

Model B Std. Error Beta t Sig.
1 (Constant) .311 .510 .610 .54

X .958 .068 .958 14.187 .00
a. Dependent Variable: Y

Residuals Statisticsa

Minimum Maximum Mean
Std.

Deviation N
Predicted Value 5.1017 9.8921 7.4250 1.3685 2
Residual -.5597 .5870 -1.78E-16 .4092 2
Std. Predicted Value -1.698 1.803 .000 1.000 2
Std. Residual -1.331 1.396 .000 .973 2

a. Dependent Variable: Y
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Figure 6

SPSS Output for Table 4 Data With Outliers on Both x and y

Model SummarP

Model R R Square
Adjusted R

Square

Std. Error
of the

Estimate
.958' .918 .913 .4204

a. Predictors: (Constant), X

b. Dependent Variable: Y

ANOVAb

Model
Sum of
Squares df

Mean
Square F Sig.

1 Regression
Residual
Total

35.581

3.182
38.763

1

18

19

35.581

.177

201.281 .00

a. predictors: (Constant), X

b. Dependent Variable: Y

Coefficientsa

Standardi
zed

Unstandardized Coefficien
Coefficients ts

Model B Std. Error Beta t Sig.
1 (Constant) .311 .510 .610 .54

X .958 .068 .958 14.187 .00
a. Dependent Variable: Y

Residuals Statisticsa

Minimum Maximum Mean
Std.

Deviation N
Predicted Value 5.1017 9.8921 7.4250 1.3685 2
Residual -.5597 .5870 -1.78E-16 .4092 2
Std. Predicted Value -1.698 1.803 .000 1.000 2
Std. Residual -1.331 1.396 .000 .973 2

a. Dependent Variable: Y

3 3
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APPENDIX A
FORTRAN Program ("HATMAT.FOR") to Compute the "Hat" Matrix

C234567 HATMAT.FOR 10/29/98
C Hoaglin, D.C., & Welsch, R.E. (1978). The Hat Matrix in

regression and ANOVA. _The American Statistician,
32 (1), 17-22._

INTEGER XR,XC,XTR,XTC,XTIR,XTIC
REAL TIT(20),X(500,30),XT(30,500),STOR(30,30),
*XTINV(30,30),STOR2(500,30),PROD(500,500),Y(500),
*IF(20)
IN=99
10=27
XR=500
XC=30
XTR=XC
XTC=XR
XTIR=XC
XTIC=XTIR

READ(IN,1)TIT,N,IV
1 FORMAT(20A4/2I5)
WRITE(I0,2)TIT,N,IV

2 FORMAT(/' JOB TITLE: ',20A4/' N= ',I5/
* N OF IVs= ',I5)
READ(IN,3)IF

3 FORMAT(20A4)
WRITE(I0,4)IF

4 FORMAT(' READ FORMAT: ',20A4//' Input Data:')
DO 5 I=1,N
READ(IN,IF)(X(I,J),J=1,IV)

5 WRITE(I0,6)I,(X(I,J),J=1,IV)
6 FORMAT(1X,I5,1X,10F8.3/9(7X,10F8.3/))

C TRANSPOSE X
DO 7 I=1,N
DO 8 J=1,IV
XT(J,I)=X(I,J)

8 CONTINUE
7 CONTINUE
WRITE(I0,9)

9 FORMAT(//' Transpose of X:')
DO 10 J=1,IV

10 WRITE(I0,6)J,(XT(J,I),I=1,10)

C XT times X
CALL MRRRR(IV,N,XT,XTR, N,IV,X,XR, IV,IV,STOR,XTR)
WRITE(I0,11)

3 4
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11 FORMAT(//' XT times X:')
DO 12 I=1,IV

12 WRITE(I0,6)I,(STOR(I,J),J=1,IV)

C Invert XT times X
CALL LINRG(IV,STOR,XTR, XTINV,XTIR)
WRITE(I0,13)

13 FORMAT(//1 Inverse of XT times X:')
DO 14 I=1,IV

14 WRITE(I0,6)I,(XTINV(I,J),J=1,IV)

C Check inverse
CALL MRRRR(IV,IV,STOR,XTR, IV,IV,XTINV,XTIR,

IV,IV,STOR2,XR)
WRITE(I0,15)

15 FORMAT(//' Check if Inverse yields I matrix:')
DO 16 I=1,IV

16 WRITE(I0,6)I,(STOR2(I,J),J=1,IV)

C Multiply X times XTINV
CALL MRRRR(N,IV,X,XR, IV,IV,XTINV,XTIR, N,IV,STOR2,XR)
WRITE (10,17)

17 FORMAT(//' X times XTINV:')
L=20
IF(N.LT.L)L=N
DO 18 I=1,L

18 WRITE(I0,6)I,(STOR2(I,J),J=1,IV)

C Compute PROD matrix
CALL MRRRR(N,IV,STOR2,XR, IV,N,XT,XTR, N,N,PROD,XR)
WRITE(I0,19)

19 FORMAT(//' The HAT matrix result:')
DO 20 I=1,N
Y(I)=PROD(I,I)

20 WRITE(I0,21)I,(PROD(I,J),J=1,N)
21 FORMAT(1X,I5,1X,10F8.4/99(7X,10F8.4/))

C Compute 'rule of thumb' critical value
CRIT=(2.*FLOAT(IV))/FLOAT(N)
WRITE(I0,22)CRIT

22 FORMAT(//' The rough critical value for leverage'/
* ((2 x IV) / N) = ',F8.5//)
WRITE(I0,23)

23 FORMAT(//'The diagonal leverage values:')
DO 24 I=1,N
IF(Y(I) .LE.CRIT)WRITE(I0,25)I,Y(I)

25 FORMAT(1X,I5,1X,F8.4)
IF(Y(I).GT.CRIT)WRITE(I0,26)I,Y(I)

26 FORMAT(1X,I5,1X,F8.4,' ****')
24 CONTINUE

WRITE(I0,27)
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27 FORMAT(//' Asterisks designate leverage above "rule of
thumb."1/)
C
C
9999 STOP

END
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APPENDIX B
Input into the HATMAT.FOR Program

Using the Hoaglin and Welsch (1978) Example Data

Hoaglin & Welsch (1978). Am Stat_, _32_(1), 17-22.
10 3

(F6.3,F6.3,F5.1,F6.2)
10.302 0.499 11.1 11.14
10.302 0.558 8.9 12.74
10.302 0.604 8.8 13.13
10.302 0.441 8.9 11.51
10.302 0.550 8.8 12.38
10.302 0.528 9.9 12.60
10.302 0.418 10.7 11.13
10.302 0.480 10.5 11.70
10.302 0.406 10.5 11.02
10.302 0.467 10.7 11.41

Note. 10.302 is the additive constant for these data to predict
"strength" using the "specific gravity" and "moisture content"
variables in the article presented by Hoaglin and Welsch (1978).
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APPENDIX C
Output Results for the Example Data

JOB TITLE: Hoaglin & Welsch (1978). Am Stat
N= 10
N OF IVs= 3

READ FORMAT: (F6.3,F6.3,F5.1,F6.2)

Input Data:

32 (1) 17-22.

1 10.302 0.499 11.100
2 10.302 0.558 8.900
3 10.302 0.604 8.800
4 10.302 0.441 8.900
5 10.302 0.550 8.800
6 10.302 0.528 9.900
7 10.302 0.418 10.700
8 10.302 0.480 10.500
9 10.302 0.406 10.500

10 10.302 0.467 10.700

Transpose of X:
1 10.302 10.302 10.302 10.302 10.302 10.302 10.302

10.302 10.302 10.302

2 0.499 0.558 0.604 0.441 0.550 0.528 0.418
0.480 0.406 0.467

3 11.100 8.900 8.800 8.900 8.800 9.900 10.700
10.500 10.500 10.700

XT times X:
1 1061.312 51.005 1017.837
2 51.005 2.489 48.585
3 1017.837 48.585 984.000

Inverse of XT times X:
1 0.447 -3.714 -0.279
2 -3.714 41.986 1.769
3 -0.279 1.769 0.202

Check if Inverse yields I matrix:
1 1.000 0.003 0.000
2 0.000 1.000 0.000
3 0.000 0.001 1.000

3 8
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X times XTINV:
1 -0.345 2.321 0.253
2 0.049 0.908 -0.086
3 -0.094 2.662 -0.025
4 0.484 -4.005 -0.293
5 0.107 0.395 -0.121
6 -0.118 1.417 0.062
7 0.068 -1.787 0.029
8 -0.107 0.463 0.098
9 0.168 -2.644 -0.032

10 -0.114 0.270 0.116

The HAT matrix result:
1 0.4178 -0.0020 0.0795 -0.2736 -0.0459 0.1814 0.1285

0.2219 0.0501 0.2423

2 -0.0020 0.2419 0.2923 0.1357 0.2433 0.1281 -0.0409
0.0327 -0.0345 0.0036

3 0.0795 0.2923 0.4173 -0.0192 0.2735 0.1871 -0.1260
0.0441 -0.1529 0.0044

4 -0.2736 0.1357 -0.0192 0.6042 0.1970 -0.0376 0.1681
-0.0215 0.2749 -0.0281

5 -0.0459 0.2433 0.2735 0.1970 0.2522 0.1106 -0.0295
0.0191 -0.0101 -0.0102

6 0.1814 0.1281 0.1871 -0.0376 0.1106 0.1479 0.0418
0.1172 0.0123 0.1112

7 0.1285 -0.0409 -0.1260 0.1681 -0.0295 0.0418 0.2616
0.1450 0.2773 0.1741

8 0.2219 0.0327 0.0441 -0.0215 0.0191 0.1172 0.1450
0.1540 0.1198 0.1677

9 0.0501 -0.0345 -0.1529 0.2749 -0.0101 0.0123 0.2773
0.1198 0.3155 0.1477

10 0.2423 0.0036 0.0044 -0.0281 -0.0102 0.1112 0.1741
0.1677 0.1477 0.1873

The rough critical value for leverage
((2 x IV) / N) = 0.60000

3 9
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The diagonal leverage values:
1 0.4178
2 0.2419
3 0.4173
4 0.6042
5 0.2522
6 0.1479
7 0.2616
8 0.1540
9 0.3155

10 0.1873

Asterisks designate leverage above "rule of thumb."

4 0
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